Track sensitivity to microphysics and radiation

Robert Fovell and Yizhe Peggy Bu, UCLA AOS Brad Ferrier, NCEP/EMC Kristen Corbosiero, U. Albany

Background

- WRF-ARW, including semi-idealized version
 - Fovell and Su (2007, GRL)
 - Fovell, Corbosiero and Kuo (2009, JAS)
 - Fovell and Boucher (2009, 13th Meso. Conf.)
 - Fovell, Corbosiero, Seifert and Liou (2010, GRL)
 - Fovell, Corbosiero and Kuo (2010, 29th Hurr. Conf.)
 - Cao, Fovell and Corbosiero (2011, Terr. Atm. Ocn.)
- Some preliminary HWRF analyses interspersed

Rita (2005)

NHC Multi-model Consensus 06 UTC 22 Sept

One model
One initialization
Vary model physics
(CP and MP)

Fovell and Su (2007) 5.5N-[replotted]

Hurricane Ike - 12 UTC 9/09/08

2008 Atlantic hurricane season ensemble – 36 km WRF-ARW - 12 members 6 microphysics and 2 cumulus schemes, GFS cold starts, no initial adjustments 5 landfalling storms, 68 ensemble runs, 816 simulations total Fovell and Boucher (2009)

Ike: vertically-averaged W and surface rainfall 54-66 h

Microphysics:

L = Lin W5 = WSM5 T = Thompson

Cumulus:

KF = Kain-Fritsch 2 BMJ = Betts-Miller-Janjic

Color shaded: mean vertical velocity from 3-12 km

Contoured: total rainfall (3 mm contours)

Composites made from **12 Ike simulations** for each member from Fovell-Boucher ensemble

Average position error vs. lead time over 68 ensemble runs

L/KF ensemble member vs. GFDL model forecast positions from best track database

Semi-idealized "bubble" experiments

WRF-ARW high-resolution experiments manipulating microphysics (MP) and radiation schemes

"no correct answer"

Model physics

- Modified WRF-ARW v. 3.2
- 9 km outer (fixed) and 3 km inner (moving) domains
- Modified Jordan sounding (Dunion and Marron 2008)
- NO LAND, fixed SST
- NO MEAN FLOW
- "Bubble" initialization
- Focus on 60 h after "spin-up period" (first 36 h)
 - Cumulus scheme used only during first 14 h of spin-up period
- Previous generation semi-idealized experiments published in Fovell and Su (2007), Fovell et al. (2009, 2010), Cao et al. (2011)

Tracks after spin-up period

Tracks following 36 h spin-up period

NO LAND

- Microphysical parameterizations
 Lin (L)
 Thompson (T)
 Seifert-2 (S2) two-moment
 scheme dominated by cloud ice
 Ferrier (F) AHW version, not
 tropical version
- Radiation schemes
 RRTM (RRTM LW & Dudhia SW)
 RRTMG (both LW & SW)
 GFDL

Microphysics schemes were active from model start. Storm positions relocated after 36 h spin-up period (cosmetic only)

- no mean flow
- slow motion represents beta drift modulated by physics-dependent symmetric and asymmetric structure
- speeds range from to 1.1 to 1.7 m/s(3.9 to 6.2 km/h)
- direction variation is of interest

Vortex-following composite fields for the semi-idealized storms

Averaged over 24 h, between 48-60 h after spin-up period "no correct answer"

- Color shaded: vertically averaged vertical velocity (sfc-500 mb)
- PV analysis (cf. Wu and Wang 2000):
 - **C** = storm motion
 - HA = horizontal advection
 - DH = diabatic heating term
 - DH* = DH + VA (vertical advection)

· C ~ HA+DH*

S2 with RRTMG

Note DH has component against motion

Note DH has component towards motion

T with RRTMG

S2 with RRTM

14

L with RRTM

S2 with RRTM

15

F with GFDL

S2 with RRTM

F with GFDL

F with GFDL

F with RRTM

Discussion

- Most storms show asymmetric structures broadly consistent with beta shear (e.g. Bender 1997), with enhanced convection on downshear to downshear-left (Frank and Ritchie 1999; Corbosiero and Molinari 2002)
- Distinct asymmetry patterns may be related to specific microphysical assumptions and interaction with dynamics and other physics
- These can influence motion, as suggested by the PV analysis
- Thompson scheme develops a sharply defined asymmetric structure, while Lin scheme structure is more symmetric (as also occurred in real-data simulations of Ike)
- F/GFDL develops the smallest eye and most sharply defined asymmetry in the vertical velocity field
- Differences likely emerge most distinctly in cases with little steering and shear

Vertical cross-sections for the semi-idealized storms

Symmetric components in radius-height space, averaged between 48-60 h

"no correct answer"

Symmetric components of

Diabatic heating from microphysics (color shaded; K/h)

Radial velocity (color shaded; K/h)

Symmetric components of

Diabatic heating from microphysics (color shaded; K/h)

Diabatic heating from radiation (0.1 K/h contours)

Radial velocity (color shaded; K/h)

Tangential velocity (10 m/s contours; 20 m/s highlighted)

F/GFDL has almost no cloud-radiative interaction

Tracks after spin-up period

Tracks following 36 h spin-up period

 Focus mainly on simulations based on S2 and F

S2: RRTM

S2@: RRTMG

F: RRTM

F@: RRTMG

F%: RRTM w/ snow seen as

cloud ice

F/GFDL

Real-data simulations with HWRF

2011 Code and **Earl (2010)** test case from DTC, vortex-following composites made between 24-42 h

Symmetric components of

Vertical velocity (color shaded; m/s)

Radial velocity (color shaded; K/h)

Diabatic heating from radiation (0.1 K/h contours)

Tangential velocity (10 m/s contours; 20 m/s highlighted)

F/GFDL also has almost no cloud-radiative interaction in the 2011 version of HWRF

28

GFDL radiation scheme **does "see" shallow clouds** but not deep ones.

The SW scheme does respond to thin ice clouds (not shown)

but not the LW scheme.

Vertically averaged W, hours 24-42

Little influence of radiation scheme on structure or motion in the Farl test case.

Vertically averaged W, hours 24-42

Even the bogus initial vortex had relatively little impact on the Earl test case (motion, structure, asymmetry).

Real-data simulations with WRF-ARW

Ike (2008) 9 September 12Z, 9 km fixed and 3 km moving nests cold start from GFS with no initial condition modification vortex-following composites made between 30-48 h

Legend for next slide

- 9 & 3 km WRF-ARW forecasts:
 - L/RRTM
 - F/RRTM
- 36 km WRF-ARW forecasts:
 - L/KF
- Other tracks
 - GFDL
 - OFCL
 - Ike best track

J. Vigh, NCAR

(revisit slide #4)

- Critical period appears to be between 30-48 h
- During that time,
 F/RRTM moves too slowly,
 too far west, as does OFCL
 forecast
- GFDL track is good but motion is too fast
- Many of the NHC consensus models evinced similar (or worse) position errors
- Original 36 km L/KF track is competitive (!)

W and PV analysis (sfc-10 km)

F/RRTM is weaker and shallower. DH* appears to encourage more westerly motion. L/RRTM is deeper and somewhat more symmetric. DH* acts in direction of motion.

Total column condensate

30-48h

F/RRTM produces a much wider (and more realistic) condensation field than graupel-dominated L/RRTM.

Discussion/summary

- GFDL radiation scheme appears to ignore deep clouds
 - In WRF-ARW and apparently in HWRF (2011) as well
- It is not clear (to us) what the magnitudes of radiative heating and cooling forced by clouds should be
- Different model physics appears to encourage distinct symmetric and asymmetric structures that can influence storm motion and may provide means of validating, modifying model physics
- Working towards examining other cases, and alternate model physics (as available)

Wu and Wang (2000, JAS) PV analysis

$$\frac{\partial PV}{\partial t} = \Lambda_1 \left[HA + VA + DH + R \right]$$
$$= \Lambda_1 \left[HA + DH * \right]$$

HA = horizontal advection VA = vertical advection DH = diabatic heating term Λ_1 extracts wavenumber 1 component