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Background

* WRF-ARW, including semi-idealized version
Fovell and Su (2007, GRL)
Fovell, Corbosiero and Kuo (2009, JAS)
Fovell and Boucher (2009, 13t Meso. Conf.)
Fovell, Corbosiero, Seifert and Liou (2010, GRL)
Fovell, Corbosiero and Kuo (2010, 29t Hurr. Conf.)
Cao, Fovell and Corbosiero (2011, Terr. Atm. Ocn.)

* Some preliminary HWRF analyses interspersed
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Hurricane Ike- 12 UTC9/09/08

36 km WRF-ARW ensemble
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2008 Atlantic hurricane season ensemble — 36 km WRF-ARW - 12 members
6 microphysics and 2 cumulus schemes, GFS cold starts, no initial adjustments

5 landfalling storms, 68 ensemble runs, 816 simulations total

Fovell and Boucher (2009)




[ke: vertically-averaged W and
surface rainfall 54-66 h

composite 3-12 km average vertical velocity (colored) and total rainfall (contoured)
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Microphysics:

L =Lin
W5 = WSM5
T =Thompson

Cumulus:
KF = Kain-Fritsch 2

2 BMJ = Betts-Miller-
Janjic

Color shaded: mean
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Composites made from 12 lke simulations for each member from Fovell-Boucher Shear according to

http://rammb.cira.colostate.edu
AMSU-derived products
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Average position error vs. lead
time over 68 ensemble runs

Position errors: L/KF vs. GFDL - all contests
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L/KF ensemble member vs. GFDL model forecast positions from best track database




Semi-idealized “bubble” experiments

WRF-ARW high-resolution experiments manipulating
microphysics (MP) and radiation schemes

“no correct answer”




Model physics

* Modified WRF-ARW v. 3.2

* 9 km outer (fixed) and 3 km inner (moving) domains
* Modified Jordan sounding (Dunion and Marron 2008)
* NO LAND, fixed SST

* NO MEAN FLOW

* “Bubble” initialization

* Focus on 60 h after “spin-up period” (first 36 h)
Cumulus scheme used only during first 14 h of spin-up period
* Previous generation semi-idealized experiments published in

Fovell and Su (2007), Fovell et al. (2009, 2010), Cao et al.
(2011)




Tracks after spin-up period

Tracks following 36 h spin-up period
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e NO LAND

e Microphysical parameterizations
Lin (L)
Thompson (T)
Seifert-2 (S2) — two-moment
scheme dominated by cloud ice
Ferrier (F) — AHW version, not
tropical version

e Radiation schemes
RRTM (RRTM LW & Dudhia SW)
RRTMG (both LW & SW)
GFDL

Microphysics schemes were active from model start. Storm positions relocated after 36 h spin-up

period (cosmetic only)
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last 12 h motion

e no mean flow

e slow motion
represents beta
drift modulated by
physics-dependent
symmetric and
asymmetric
structure

e speeds range from
tol.1to 1.7 m/s
(3.9 to 6.2 km/h)

e direction variation
is of interest

(0]




Vortex-following composite fields for the
semi-idealized storms

Averaged over 24 h, between 48-60 h after spin-up period

“no correct answer”




Vertically averaged W

* Color shaded:
vertically averaged
vertical velocity (sfc-

500 mb)

* PV analysis (cf. wu and
Wang 2000).
* C = storm motion
* HA = horizontal

advection
* DH = diabatic heating
term
o : - * DH* = DH + VA (vertical
T T T —— advection)
vertical velocity (m/s) ( 12 J
< 150 km >

S2 with RRTM



Vertically averaged W
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Vertically averaged W
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Vertically averaged W
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Vertically averaged W
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S2 with RRTM F with GFDL



Vertically averaged W
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Vertically averaged W
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Discussion

* Most storms show asymmetric structures broadly consistent with
beta shear (e.g. Bender 1997), with enhanced convection on
downshear to downshear-left (Frank and Ritchie 1999; Corbosiero
and Molinari 2002)

* Distinct asymmetry patterns may be related to specific microphysical
assumptions and interaction with dynamics and other physics

* These can influence motion, as suggested by the PV analysis

* Thompson scheme develops a sharply defined asymmetric structure,
while Lin scheme structure is more symmetric (as also occurred in
real-data simulations of lke)

* F/GFDL develops the smallest eye and most sharply defined
asymmetry in the vertical velocity field

* Differences likely emerge most distinctly in cases with little steering
and shear




Vertical cross-sections for the semi-idealized
storms

Symmetric components in radius-height space, averaged
between 48-60 h

“no correct answer”
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Diabatic heating from Radial velocity (color shaded;
microphysics (color shaded,; K/h)
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Note the microphysics heating color shading interval is log, scaled




Diabatic: MP & rad Wind: radial & tangential
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Diabatic heating from radiation combines LW and SW



Diabatic: MP & rad Wind: radial & tangential

GFDL
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F/GFDL has almost no cloud-radiative interaction




Diabatic: MP & rad Wind: radial & tangential
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Diabatic: MP & rad Wind: radial & tangential




Tracks after spin-up period

Tracks following 36 h spin-up period

e Focus mainly on simulations
based on S2 and F

S2: RRTM
S2@: RRTMG

F: RRTM

F@: RRTMG

F%: RRTM w/ snow seen as
cloud ice

F/GFDL

S50km
—

Microphysics schemes were active from model start. Storm positions relocated after 36 h spin-up
period (cosmetic only)




Real-data simulations with HWRF

2011 Code and Earl (2010) test case from DTC,
vortex-following composites made between 24-42 h
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F/GFDL also has almost no cloud-radiative interaction
in the 2011 version of HWRF




BOGUS GFDL QC/LW+SW

Composite cloud water field
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GFDL radiation scheme does “see” shallow clouds but not deep ones.
The SW scheme does respond to thin ice clouds (not shown)
but not the LW scheme.
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Vertically averaged W,
hours 24-42

F/GFDL

Earl BOGUS GFDL wavg
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Little influence of radiation scheme on structure or motion

AMSU-derived products

in the Earl test case.

200



http://rammb.cira.colostate.edu
http://rammb.cira.colostate.edu

Vertically averaged W,
hours 24-42
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Even the bogus initial vortex had relatively little
e accordne to o eew IMpact on the Earl test case (motion, structure, asymmetry).

AMSU-derived products
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Real-data simulations with WRF-ARW

Ike (2008) 9 September 127,
9 km fixed and 3 km moving nests
cold start from GFS with no initial condition modification

vortex-following composites made between 30-48 h




Legend for next slide

* 9 & 3 km WRF-ARW forecasts:
L/RRTM
F/RRTM

* 36 kmm WRF-ARW forecasts:

* Other tracks
GFDL
OFCL
Ike best track




J. Vigg, NCAR

" NHC multi-model ensemble

(revisit slide #4)
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e Critical period appears
to be between 30-48 h

e During that time,
F/RRTM moves too slowly,
too far west, as does OFCL
forecast

e GFDL track is good but
motion is too fast

e Many of the NHC
consensus models evinced
similar (or worse) position
errors

e Original 36 km L/KF track
is competitive (!)
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W and PV analysis (sfc-10 km)

F/RRTM 30-48h L/RRTM

< 250 km > [ 35 J
F/RRTM is weaker and shallower. DH* appears to encourage more westerly motion.
L/RRTM is deeper and somewhat more symmetric. DH* acts in direction of motion.




Total column condensate

30-48h
F/RRTM column sum condensate L/RRTM column sum condensate
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F/RRTM produces a much wider (and more realistic) condensation field
than graupel-dominated L/RRTM.




Discussion/summary

* GFDL radiation scheme appears to ignore deep clouds
In WRF-ARW and apparently in HWRF (2011) as well

* Itis not clear (to us) what the magnitudes of radiative heating
and cooling forced by clouds should be

* Different model physics appears to encourage distinct
symmetric and asymmetric structures that can influence
storm motion and may provide means of validating, modifying
model physics

* Working towards examining other cases, and alternate model
physics (as available)




. Wu and Wang (2000, JAS)
- PV analysis
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